Home
Class 12
MATHS
If a,b,c are positive real numbers then ...

If a,b,c are positive real numbers then `(1+a)^7(1+b)^7(1+c)^7` (A) `lt7^7a^4b^4c^4` (B) `le7^7a^4b^4c^4` (C) `gt7^7a^4b^4c^4` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive real no., then prove that [(1+a)(1+b)(1+c)]^7 gt 7^7a^4b^4c^4 .

If a , b , c , are positive real numbers, then prove that (2004, 4M) {(1+a)(1+b)(1+c)}^7>7^7a^4b^4c^4

If a , b , c , are positive real numbers, then prove that (2004, 4M) {(1+a)(1+b)(1+c)}^7>7^7a^4b^4c^4

If a,b,c, are positive real numbers,then prove that (2004,4M){(1+a)(1+b)(1+c)}^(7)>7^(7)a^(4)b^(4)c^(4)

Divide : 63a^2b^4c^6 by 7a^2b^2c^3

The coefficient of x^3y^4z in the expansion of (1+x+y-z)^9 is (A) 2.^9C_7.^7C_4 (B) -2.^9C_2 . ^7C_4 (C) ^9C_7.^7C_4 (D) none of these

If a,B,C are positive acute angles and tan A=(4)/(7),tan B=(1)/(7),tan C=(1)/(8), prove that A+B+C=45

Let a,b and c be real numbers such that a7b+8c and 8a+4bc=7, then find a^(2)-b^(2)+c^(2)

The value of int_a^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-a)^8)/(280) (c) ((b-a)^7)/(7^3) (d) none of these

The value of int_(a)^(b)(x-a)^(3)(b-x)^(4)dx is (A)((b-a)^(4))/(6^(4))(B)((b-a)^(8))/(280) (C) ((b-a)^(7))/(7^(3)) (D) none of these