Home
Class 12
MATHS
" 7."x^(2)+y^(2)=log(xy)...

" 7."x^(2)+y^(2)=log(xy)

Promotional Banner

Similar Questions

Explore conceptually related problems

derivative of x^(2)+y^(2)=log(xy)

Find (dy)/(dx) , when: x^(2)+y^(2)=log(xy)

If log_(10)|x^(3)+y^(3)|-log_(10)|x^(2)-xy+y^(2)|+log_(10)|x^(3)-y^(3)|-log_(10)|x^(2)+xy+y^(2)|=log_(10)221 . Where x, y are integers, then Q. If y=2 , then value of x can be :

If x^2 + y^2 = log(xy) , find dy/dx .

If x^2 + y^2 = log(xy) , find dy/dx .

If u=log((x^(2) + y^(2))/(xy)) , then

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If x^(2) + y^(2) = 23xy , then show that 2log(x + y) = 2log 5 + log x + log y.

The solution of xy.log((x)/(y))dx+{y^(2)-x^(2)log((x)/(y))}dy =

if x^(2)=2y^(2)log y then prove (x^(2)+y^(2))(dy)/(dx)-xy=0