Home
Class 12
MATHS
If A^2=1, then the value of det(A-I) is ...

If `A^2=1,` then the value of det`(A-I)` is (where `A` has order 3) `1` b. `-1` c. `0` d. cannot say anything

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in AP,then the value of det[[1,2,a2,3,b3,4,c]]

what is the value of i^(-35)+i^7 ? (a) 1 (b) 3 (c) 0 (d) 2

A is square matrix of order 2 such that A A^(T)= I and B is non-singular square matrix of order 2 and period 3 . If det (A)!=det(B), then value of sum_(r=0)^(20)det(adj(A^(r)B^(2r+1))) is (where A^(T) denotes the transpose of matrix A )

If Det(AA^(T)B)=8 and Det(AB^(-1))=8 then the value of Det(BB^(T)A^(-1)) is equal to (A) 116 (B) 14 (C) 16 (D) 1

Consider a determinant D=det[[a,bc,d]] where a,b,c,d in{0,1} If n denote the total number of determinants whose entries are 0 or 1 only with non zero value,then the ratio (m)/(n) equals (A) (3)/(16) (B) (4)/(16) (C) (6)/(16) (D) (8)/(16)

Given A=[a_(ij)]3xx3 be a matrix, where a_(ij)={i-j if i != j and i^2 if 1=j If C_(ij) be the cofactor of a_(ij), in the matrix A and B = [b_(ij)]3xx3 be a matrix such that bch that b_(ij)=sum_(k=1)^3 a_(ij) c_(jk), then the value of [(3sqrt(det B))/8] is equal to(where denotes greatest integer function and det B denotes determinant value of B)

If a,b,c are in A.P then the value of det[[1,2,a2,3,b3,4,c]]

Let A=[[2,4],[-1,-2]] ,then the value of det(1+2A+3A^(2)+4A^(3)+5A^(4)+...+101A^(100)) equals (where I is the identity matrix of order 2)

Let B be a skew symmetric matrix of order 3times3 with real entries. Given I-B and I+B are non-singular matrices. If A=(I+B)(I-B)^(-1), where det (A)>0 ,then find the value of det(2A)-det(adj(A)) [Note: det(P) denotes determinant of square matrix P and det(adj (P)) denotes determinant of adjoint of square matrix P respectively.]