Home
Class 9
MATHS
" 0."(3+sqrt(3))(2+sqrt(2))...

" 0."(3+sqrt(3))(2+sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Evaluate : ( sqrt(3) + sqrt(2)) / ( sqrt(3) - sqrt(2) + ( sqrt(3) - sqrt(2)) / ( sqrt(3) + sqrt(2)

26. Prove that the points O(0,0,0),A(2.0,0),B(1,sqrt(3),0) and C(1,(1)/(sqrt(3)),(2sqrt(2))/(sqrt(3))) are the vertices of a regular tetrahedron...

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

If a=(4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (a)(0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (a) (0,0) (b) (sqrt(3),-(sqrt(3))/2) (c) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)