Home
Class 11
MATHS
1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+...

`1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+ n` terms is equal to `(sqrt(3n+2)-sqrt(2))/3` b. `n/(sqrt(2+3n)+sqrt(2))` c. less than`n` d. less than`sqrt(n/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+ n terms is equal to a. ((sqrt(3n +2))-sqrt(2))/(3) b.(n)/(sqrt(2+3n)+sqrt(2)) c.less than n d.less than sqrt(n/3)

Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n terms= (A) n/(sqrt(3n+2)-sqrt(2)) (B) 1/3 (sqrt(2)-sqrt(3n+2) (C) n/(sqrt(3n+2)+sqrt(2)) (D) none of these

Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n terms= (A) n/(sqrt(3n+2)-sqrt(2)) (B) 1/3 (sqrt(2)-sqrt(3n+2) (C) n/(sqrt(3n+2)+sqrt(2)) (D) none of these

Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n terms= (A) n/(sqrt(3n+2)-sqrt(2)) (B) 1/3 (sqrt(2)-sqrt(3n+2) (C) n/(sqrt(3n+2)+sqrt(2)) (D) none of these

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

sqrt(6-4sqrt(3)+sqrt(16-8sqrt(3))) is equal to 1-sqrt(3) b.sqrt(3)-1 c.2(2-sqrt(3)) d.2(2+sqrt(3))

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) , then N+2 equals