Home
Class 12
MATHS
Ify=int0^xf(t)sin{k(x-t)dt ,t h e np rov...

`Ify=int_0^xf(t)sin{k(x-t)dt ,t h e np rov et h a t(dt^2y)/(dx^2)+k^2y=kf(x)dot`

Text Solution

Verified by Experts

`y=int_(0)^(x)f(t)sin{k(x-t)}dt`
`=int_(0)^(x)f(t)[sinixcoskt-sinktcoskx]dt`
`=sinkx int_(0)^(x)f(t)cosktdt-coskx int_(0)^(x)f(t)sin kt dt`…………….1
`:.(dy)/(dt)=kcoskx int_(0)^(x)f(t)cosktdt+sinkx[f(x)cosx]`
`+ksin kx int_(0)^(x)f(t)sin ktdt-coskx[f(x)sinkx]`
`=kcoskx int_(0)^(x)f(t)cos ktdt+ksinkx int_(0)^(x)f(t)sin ktdt`..................2
Again differentiating equation (2) w.r.t `x` we get
`(d^(2)y)/(dx^(2))=-k^(2)sin kx int_(0)^(x)f(t)cos ktdt+cos kx[f(x)coskx]`
`+k^(2)coskx int_(0)^(x)f(t)sin tdt+k sin kx[f (x)sin kx]`
`=-k^(2)y+kf(x)`
`:.(d^(2)y)/(dx^(2))+k^(2)y=kf(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(t)(cost-sin t)dt

int_(0)^(2 pi)[sin t]dt

If int_(y)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dx, the prove that (dy)/(dx)=(2sin x^(2))/(x cos y^(2))

y=int_(1)^(x)x.sqrt(ln t)dt. Find the value of (d^(2)y)/(dx^(2)) at x=e

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

If kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt , then the value of k is

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is