Home
Class 12
MATHS
f(x) is a continuous function for all re...

`f(x)` is a continuous function for all real values of `x` and satisfies `int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot` Then `int_(-3)^5f(|x|)dx` is equal to `(19)/2` (b) `(35)/2` (c) `(17)/2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If int_(n)^(n+1)f(x)dx = n^(2) , where n is an integer, then int_(-2)^(4)f(x)dx=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

Let f(x) be a continuous function such that int_(n)^(n+1) f(x) dx=n^(3) , ninZ . Then the value of the integeral int_(-3)^(3) f(x) dx, is

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

Let f:R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y,in R if int_(0)^(2)f(x)dx=alpha, then int_(-2)^(2)f(x)dx is equal to

A continuous real function f satisfies f(2x)=3(f(x)AA x in R. If int_(0)^(1)f(x)dx=1 then find the value of int_(1)^(2)f(x)dx

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)