Home
Class 12
MATHS
The value of int(1/e)^(tanx)(tdt)/(1+t^2...

The value of `int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)),` where `x in (pi/6,pi/3)` , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

the value of int_((1)/(e)rarr tan x)(tdt)/(1+t^(2))+int_((1)/(e)rarr cot x)(dt)/(t*(1+t^(2)))=

[int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))" is "],[" equal to "]

For all values of , int_(1//e)^(tanx) (t)/(1+t^(2))dt+int_(1//e)^(tanx) (dt)/(t(t+t^(2))) has the value

if int(e^(t)dt)/(1+t)=a then int e^(t)(dt)/((1+t)^(2))=

The value of int_(e^(-1))^(e) (dt)/(t(t+1)) is equal to

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to