Home
Class 12
MATHS
Prove that: y=int(1/8)^(sin^2x)sin^(-1)...

Prove that: `y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t)`,where `0lt=xlt=pi/2`, is the equation of a straight line parallel to the x-axis. Find the equation.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=

Prove that :int_(0)^((pi)/(2))sqrt(1-sin2x)dx=2(sqrt(2)-1)

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=