Home
Class 12
MATHS
Given a matrix A=[a b c b c a c a b],w h...

Given a matrix `A=[a b c b c a c a b],w h e r ea ,b ,c` are real positive numbers `a b c=1a n dA^T A=I ,` then find the value of `a^3+b^3+c^3dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A =[{:( a,b,c),(b,c,a),(c,a,b) :}] where a,b,c are real positive number ,abc =1 and A^(T) A = I then Which of the following is/are true

If a,b,c are positive real numbers such that a +b+c=18, find the maximum value of a^(2)b^(3)c^(4)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c dot

If log_(b) a. log_(c ) a + log_(a) b. log_(c ) b + log_(a) c. log_(b) c = 3 (where a, b, c are different positive real number ne 1 ), then find the value of a b c.

If log_b a log_c a+log_a blog_c b+log_a clog_b c=3(where a,b,c are different positive real number !=1) then find the value of abc

If a, b, c are positive and a + b + c = 1, then find the least value of (1)/(a)+(2)/(b)+(3)/(c)

If positive numbers a, b, c are in H.P, then minimum value of (a+b)/(2a-b)+(c+b)/(2c-b) is

If A=[a b c b c a c a b],a b c=1,A^T A=I , then the value of a^3+b^3+c^3 can be 3 (2) 0 (3) 1 (4) 4