Home
Class 12
MATHS
cos2theta-(sqrt2+1)(costheta-1/sqrt2)=0...

`cos2theta-(sqrt2+1)(costheta-1/sqrt2)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

cos2theta = (sqrt(2)+1)(costheta -1/sqrt(2))

If cos2theta = (sqrt(2)+1)(costheta -1/sqrt(2)) , then value of theta is

cos2 theta-(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))=0

Solve for theta : cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2)) .

Solve for theta : cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2)) .

If cos theta ne 1/2, then the solution of the equation cos 2 theta =(sqrt2 +1) (cos theta -(1)/(sqrt2)) are-

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)