Home
Class 12
MATHS
If int0^oo(sinx)/xdx=pi/2,t h e nint0^oo...

If `int_0^oo(sinx)/xdx=pi/2,t h e nint_0^oo(sin^3x)/x dx` is equal to (a)`pi/2` (b) `pi/4` (c) `pi/6` (d) `(3pi)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int _(0)^(oo) (cos x)/(x ) dx =pi/2 , then int _(0)^(oo) (cos ^(3) x )/(x) dx is equals to:

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

int_0^21/(1+tanx)dx is equal to (pi^)/4 (b) (pi^)/3 (c) (pi^)/2 (d) pi

int_0^(pi//2)xsinx\ dx is equal to pi//2 b. pi//4 c. pi d. 1

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

int_(0)^(pi//2) e^(sin)x cos xdx is equal to

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

int_0^(pi//2)(sinx)/(s in x+cos x)dx equals to pi//2 b. pi//4 c. pi//3 d. pi

int_0^(pi//2)sin2xlogtanx\ dx\ is equal to pi//2 b. pi c. 0 d. 2pi