Home
Class 10
MATHS
If x^(2) + y^(2) = 23xy, then show tha...

If `x^(2) + y^(2) = 23xy`, then show that 2log(x + y) = 2log 5 + log x + log y.

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.

x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.

if x^(2)+y^(2)= 25 xy then prove that 2log(x+y) = 3log 3 + log x + logy.

If x^(2)+y^(2) = 6xy , then prove that 2log(x+y) = log x + logy + 3log2 .

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2