Home
Class 12
MATHS
I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^...

`I_1=int_0^(pi/2)ln(sinx)dx ,I_2=int_(-pi/4)^(pi/4)ln(sinx+cosx)dxdot` Then `I_1=2I_2` (b) `I_2=2I_1` `I_1=4I_2` (d) `I_2=4I_1`

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then

If I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx , then :

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I=int_(-pi/2)^(pi/2) 1/(1+e^(sinx))dx then I is

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then