Home
Class 12
MATHS
Prove that int0^oo[n e^(-x)]dx=ln((n^n...

Prove that `int_0^oo[n e^(-x)]dx=ln((n^n)/(n !)),w h e r en` is a natural number greater than 1 and [.] denotes the greatest integer function..

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(a)[x^(n)]dx, (where,[*] denotes the greatest integer function).

lim_(x rarr o+)(log x^(n)-[x])/([x]), n being a natural number and [x] denotes greatest integer function.

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

int_(-n)^(n)(-1)^([x])backslash dx when n in N= in all of these [.] denotes the greatest integer function

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

If n in N , the value of int_(0)^(n) [x] dx (where [x] is the greatest integer function) is

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

Let I_(n)= int_(0)^(1)(x ln x)^(n)dx, if I_(4)=k int_(0)^(1)x^(4)(ln x)^(3)dx, then |[k]| is equal to ([.] denotes greatest integer function).