Home
Class 12
MATHS
" The locus of poles of tangents to the ...

" The locus of poles of tangents to the circle "(x-p)^(2)+y^(2)=b^(2)" w.r.t the circle "x^(2)+y^(2)=a^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of poles of tangents to the circle x^(2)+y^(2)=a^(2) w.r.t the circle x^(2)+y^(2)+2ax-a^(2)=0 is

The locus of poles of tangents to the circle x^(2)+y^(2)=a^(2) w.r.t the circle x^(2)+y^(2)+2ax-a^(2)=0 is

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is: (a) parabola (b) ellipse (c) hyperbola (d) circle

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is:

If the pole of a line w.r.t to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=a^(4) then find the equation of the circle touched by the line.

If the pole of a line w.r.t to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=a^(4) then the line touches the circle