Home
Class 12
MATHS
If |cosx|^(sin^2x-3/2sinx+1/2)=1 then x=...

If `|cosx|^(sin^2x-3/2sinx+1/2)=1` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |Cosx|^(sin^(2)x-(3)/(2)sinx+(1)/(2))=1 then x=

If x!=(kpi)/2,\ k in I and (cosx)^( sin^2x-3sinx+2 =1 , then all solutions of x

int(cosx)/(3sin^2x-4sinx+1)dx=

int (cosx dx)/((sinx-1)(sin x-2))=

If A=[(cosx,sinx),(-sinx,cosx)] , show that A^(2)=[(cos2x,sin2x),(-sin2x,cos2x)] and A^(1)A=1 .

sinx + cosx = (cos2x)/(1-sin2x)

(cosx)/((1-sinx)(2-sinx)) [Hint : Put sin x = t]

(cosx)/((1-sinx)(2-sinx)) [Hint : Put sin x = t]

(cosx)/((1-sinx)(2-sinx)) [Hint : Put sin x = t]