Home
Class 12
MATHS
I) If sin^6x+cos^6x=1/4 then x=(npi)/2+p...

I) If `sin^6x+cos^6x=1/4` then `x=(npi)/2+pi/4` II) There is no value of `x` in the positive quadrantfor which the sum `1+sinx+sin^2x+......oo` is `1+2sqrt3` III) `sinx > cos x` if `x=1980^@.` Which of the following is correct ?

Promotional Banner

Similar Questions

Explore conceptually related problems

sin3x + sinx = cos6x + cos4x

Number of real values of x in [0,4 pi] for which |sin x|+|sin x-1|+|sinx-3|+|sin x-4|=6 is

If sinx+ sin^2x =1 , then cos^8x+ 2cos^6x +cos^4x =

The general solution of the equation 8 cos x cos 2x cos 4x=sin 6x/sinx is

Find the value of x in [-pi,pi] for which f(x)=sqrt((log)_2(4sin^2x-2sqrt(3)sinx-2sinx+sqrt(3)+1)) is defined.

Find the value of x in [-pi,pi] for which f(x)=sqrt((log)_2(4sin^2x-2sqrt(3)sinx-2sinx+sqrt(3)+1)) is defined.

Find the value of x in [-pi,pi] for which f(x)=sqrt((log)_2(4sin^2x-2sqrt(3)sinx-2sinx+sqrt(3)+1)) is defined.

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x