Home
Class 12
MATHS
Ifint0^(f(x))t^2dt=xcospix ,t h e nf^(pr...

`Ifint_0^(f(x))t^2dt=xcospix ,t h e nf^(prime)(9)i s` `-1/9` (b) `-1/3` (c) `1/3` (d) non-existent

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(f(x))t^(2)dt=x cos pi x, then f'(9)is-(1)/(9) (b) -(1)/(3)(c)(1)/(3)(d) non-existent

If int_(0)^(x^(2))f(t)dt=xcospix , then the value of f(4) is :a)1 b) 1/4 c)-1 d) (-1)/4

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these