Home
Class 11
MATHS
Given that: (1+cosalpha)(1+cosbeta)(1+co...

Given that: `(1+cosalpha)(1+cosbeta)(1+cosgamma)=(1-cosalpha)(1-cosbeta)(1-cosgamma)dot` Show that one of the values of each member of this equality is `sinalphasinbetasingammadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove related problems - Type 2-(1) If cos theta+sintheta=sqrt2costheta prove that cos theta-sin theta=sqrt2 sin theta(2) Given that (1+cos alpha)(1+cos beta)(1+cos gamma)=(1-cosalpha)(1-cosbeta)(1-cosgamma) Show that the value of each member of the equality is sinalphasinbetasingamma

if (1+cosalpha)(1+cosbeta)(1+cosgamma)=(1-cosalpha) (1-cosbeta)(1-cosgamma) then show that each side= pm sin alpha sin beta singamma

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) , then the values of tan(theta/2) is

If alpha+beta+gamma=0 ,prove that cosalpha+cosbeta+cosgamma=4cos(alpha/2)cos(beta/2)cos(gamma/2)-1

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) . prove that one of the value of "tan"(theta)/(2) is "tan"(alpha)/(2)"cot"(beta)/(2) .

If cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0 , then the value of cos3alpha+cos3beta+cos3gamma is

If sinalpha + sinbeta + singamma = 3 , then cosalpha + cosbeta + cosgamma equals :