Home
Class 8
MATHS
Evaluate: (i) 5 ^(-3) " " (ii) ((1)/(...

Evaluate:
`(i) 5 ^(-3) " " (ii) ((1)/(3))^(-4) " "(iii) ((5)/(2))^(-3)" "(iv)(-2)^(-5)" "(v) ((-3)/(4)) ^(-4)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given expressions step by step. ### (i) Evaluate \( 5^{-3} \) 1. **Apply the property of negative exponents**: \[ 5^{-3} = \frac{1}{5^{3}} \] 2. **Calculate \( 5^3 \)**: \[ 5^3 = 5 \times 5 \times 5 = 125 \] 3. **Final result**: \[ 5^{-3} = \frac{1}{125} \] ### (ii) Evaluate \( \left(\frac{1}{3}\right)^{-4} \) 1. **Apply the property of negative exponents**: \[ \left(\frac{1}{3}\right)^{-4} = \frac{1}{\left(\frac{1}{3}\right)^{4}} = 3^{4} \] 2. **Calculate \( 3^4 \)**: \[ 3^4 = 3 \times 3 \times 3 \times 3 = 81 \] 3. **Final result**: \[ \left(\frac{1}{3}\right)^{-4} = 81 \] ### (iii) Evaluate \( \left(\frac{5}{2}\right)^{-3} \) 1. **Apply the property of negative exponents**: \[ \left(\frac{5}{2}\right)^{-3} = \frac{1}{\left(\frac{5}{2}\right)^{3}} = \left(\frac{2}{5}\right)^{3} \] 2. **Calculate \( \left(\frac{2}{5}\right)^{3} \)**: \[ \left(\frac{2}{5}\right)^{3} = \frac{2^3}{5^3} = \frac{8}{125} \] 3. **Final result**: \[ \left(\frac{5}{2}\right)^{-3} = \frac{8}{125} \] ### (iv) Evaluate \( (-2)^{-5} \) 1. **Apply the property of negative exponents**: \[ (-2)^{-5} = \frac{1}{(-2)^{5}} \] 2. **Calculate \( (-2)^{5} \)**: \[ (-2)^{5} = -2 \times -2 \times -2 \times -2 \times -2 = -32 \] 3. **Final result**: \[ (-2)^{-5} = \frac{1}{-32} = -\frac{1}{32} \] ### (v) Evaluate \( \left(-\frac{3}{4}\right)^{-4} \) 1. **Apply the property of negative exponents**: \[ \left(-\frac{3}{4}\right)^{-4} = \frac{1}{\left(-\frac{3}{4}\right)^{4}} = \left(-\frac{4}{3}\right)^{4} \] 2. **Calculate \( \left(-\frac{4}{3}\right)^{4} \)**: \[ \left(-\frac{4}{3}\right)^{4} = \frac{(-4)^{4}}{3^{4}} = \frac{256}{81} \] 3. **Final result**: \[ \left(-\frac{3}{4}\right)^{-4} = \frac{256}{81} \] ### Summary of Results: 1. \( 5^{-3} = \frac{1}{125} \) 2. \( \left(\frac{1}{3}\right)^{-4} = 81 \) 3. \( \left(\frac{5}{2}\right)^{-3} = \frac{8}{125} \) 4. \( (-2)^{-5} = -\frac{1}{32} \) 5. \( \left(-\frac{3}{4}\right)^{-4} = \frac{256}{81} \)
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2A|13 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2B|7 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) 3 ^(-4) " "(ii) (-4) ^(3) " "(iii) ((3)/(4))^(-2)" "(iv) ((-2)/(3)) ^(-5) " "(v) ((5)/(7))^(0)

Evaluate: (i) 4 ^(-3) (ii) ((1)/(2 )) ^(-5) (iii) ((4)/(3))^(-3) (iv) (-3) ^(4) (v) ((-2)/(3)) ^(-5)

Evaluate each of the following : (i)2^(3)xx2^(2)" "(ii)3^(5)divide3^(2)" "(iii)(5^(2))^(3)" "(iv)((3)/(4))^(3)" "(v)((2)/(3))^(-3)" "(vi)2^(4)xx2^(-4)

Simplify: (3/4)^2 (ii) ((-2)/3)^4 (iii) ((-4)/5)^5

Evaluate: ( i ) (frac(3)(4))^(2) ( ii ) (frac(-2)(3))^(3) ( iii ) (frac(-4)(5))^(5)

Evaluate each of the following: (i)5^(2)*5^(4) (ii) 5^(8)+5^(3)(iii)(3^(2))^(3)((11)/(12))^(3) (v) ((3)/(4))^(-3)

Evaluate : (i) (3)/(4)-(4)/(5) (ii) -3-(4)/(7) (iii) (7)/(24)-(19)/(36) (iv) (14)/(15)-(13)/(20) (v) (4)/(9)-(2)/(-3) (vi) (7)/(11)- (-4)/(-11) (vii) (-5)/(14) -(-2)/(7) (viii) (-5)/(-8)-(-3)/(4)

Find the value of: (i) (-4) -: 2/3 (ii) (-3)/5 -: 2 (iii) (-4)/5 -: (-3) (iv) (-1)/8 -: 3/4 (v) (-2)/(13) -: 1/7 (vi) (-7)/(12) -: ((-2)/(13)) (vii) 3/(13) -: ((-4)/(65))

Simplify and express the result in power notation with positive exponent.(i) (-4)^(5)-:(-4)^(8)( ii) ((1)/(2^(3)))^(2) (iii) (-3)^(4)xx((5)/(3))^(4)( iv) (3^(-7)-:3^(-10))xx3^(-5)(v)2^(-3)xx(-7)^(-3)

The value of cos phi is (i) (5)/(4) (ii) (5)/(3)( iii) (3)/(5) (iv) (4)/(5)