Home
Class 8
MATHS
Evaluate: (i) ((2)/(3))^(3) xx ((2)/(...

Evaluate:
`(i) ((2)/(3))^(3) xx ((2)/(3)) ^(2)" "(ii)((4)/(7))^(7)xx ((4)/(7))^(-3)" "(iii) ((3)/(2))^(-3) " "(iv) ((8)/(5))^(-3) xx((8)/(5))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate each part of the question step by step. ### (i) Evaluate \(\left(\frac{2}{3}\right)^{3} \times \left(\frac{2}{3}\right)^{2}\) **Step 1:** Identify the bases and add the exponents. - The base is \(\frac{2}{3}\). - The exponents are \(3\) and \(2\). - According to the property of exponents, when multiplying like bases, we add the exponents: \[ \left(\frac{2}{3}\right)^{3 + 2} = \left(\frac{2}{3}\right)^{5} \] **Step 2:** Calculate \(\left(\frac{2}{3}\right)^{5}\). - This means: \[ \left(\frac{2}{3}\right)^{5} = \frac{2^{5}}{3^{5}} = \frac{32}{243} \] **Final Answer for (i):** \(\frac{32}{243}\) --- ### (ii) Evaluate \(\left(\frac{4}{7}\right)^{7} \times \left(\frac{4}{7}\right)^{-3}\) **Step 1:** Identify the bases and add the exponents. - The base is \(\frac{4}{7}\). - The exponents are \(7\) and \(-3\). - Adding the exponents: \[ \left(\frac{4}{7}\right)^{7 + (-3)} = \left(\frac{4}{7}\right)^{4} \] **Step 2:** Calculate \(\left(\frac{4}{7}\right)^{4}\). - This means: \[ \left(\frac{4}{7}\right)^{4} = \frac{4^{4}}{7^{4}} = \frac{256}{2401} \] **Final Answer for (ii):** \(\frac{256}{2401}\) --- ### (iii) Evaluate \(\left(\frac{3}{2}\right)^{-3}\) **Step 1:** Apply the property of negative exponents. - The base is \(\frac{3}{2}\) and the exponent is \(-3\). - According to the property: \[ \left(\frac{3}{2}\right)^{-3} = \frac{2^{3}}{3^{3}} \] **Step 2:** Calculate \(\frac{2^{3}}{3^{3}}\). - This means: \[ \frac{2^{3}}{3^{3}} = \frac{8}{27} \] **Final Answer for (iii):** \(\frac{8}{27}\) --- ### (iv) Evaluate \(\left(\frac{8}{5}\right)^{-3} \times \left(\frac{8}{5}\right)^{2}\) **Step 1:** Identify the bases and add the exponents. - The base is \(\frac{8}{5}\). - The exponents are \(-3\) and \(2\). - Adding the exponents: \[ \left(\frac{8}{5}\right)^{-3 + 2} = \left(\frac{8}{5}\right)^{-1} \] **Step 2:** Apply the property of negative exponents. - This means: \[ \left(\frac{8}{5}\right)^{-1} = \frac{5}{8} \] **Final Answer for (iv):** \(\frac{5}{8}\) --- ### Summary of Answers: 1. \(\frac{32}{243}\) 2. \(\frac{256}{2401}\) 3. \(\frac{8}{27}\) 4. \(\frac{5}{8}\) ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2A|13 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2B|7 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) ((5)/(3)) ^(2 ) xx ((5)/(3)) ^(2) (ii) ((5)/(6))^(6) xx ((5)/(6)) ^(-4) (iii) ((2)/(3)) ^(-3) xx ((2)/(3)) ^(-2) (iv) ((9)/(8)) ^(-3) xx ((9)/(8)) ^(2)

Simplify ( i ) (((1)/(3))^(-2)-((1)/(2))^(-3)}-:((1)/(4))^(-2)*( ii) ((5)/(8))^(-7)xx((8)/(5))^(-5)

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)

Simplify each of the following and express each as a rational number: ( i ) (frac(2)(3))^(4) xx (frac(2)(3))^(2) ( ii ) (frac(-3)(4))^(3) xx (frac(-3)(4))^(2) ( iii ) (frac(5)(7))^(5) xx (frac(5)(7))^(-3) ( iv ) (frac(-3)(5))^(-3) xx (frac(-3)(5))^(2)

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

Simplify each of the following as a rational number: ( i ) (frac(4)(9))^(6) xx (frac(4)(9))^(-4) ( ii ) (frac(-7)(8))^(-3) xx (frac(-7)(8))^(2) ( iii ) (frac(4)(3))^(-3) xx (frac(4)(3))^(-2)

Name the property of multiplication shown by each of the following statements: (i) (-12)/(5) xx (3)/(4)=(3)/(4)xx (-12)/(5) (ii) (-8)/(15) xx 1=(-8)/(15) (iii) ((-2)/(3) xx (7)/(8)) xx (-5)/(7) = (-2)/(3) xx ((7)/(8) xx (-5)/(7)) (iv) (-2)/(3) xx 0=0 (v) (2)/(5) xx ((-4)/(5) +(-3)/(10)) = ((2)/(5) xx (-4)/(5)) +((2)/(5)xx (-3)/(10))

Simplify and write the answer in the exponential form.(i) (2^(5)-:2^(8))^(5)xx2^(-5) (ii) (-4)^(-3)xx(5)^(-3)xx(-5)^(-3)( iii) (1)/(8)xx(3)^(-3) (iv) (-3)64xx((5)/(3))^(4)

Verify that: (2)/(3)xx(-(4)/(5)+(-(3)/(7)))=(2)/(3)xx(-(4)/(5))+(2)/(3)xx(-(3)/(7))