Home
Class 8
MATHS
Evaluate ((-1)/(4)) ^(-3) xx ((-1)/(4)) ...

Evaluate `((-1)/(4)) ^(-3) xx ((-1)/(4)) ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(-\frac{1}{4}\right)^{-3} \times \left(-\frac{1}{4}\right)^{2}\), we can follow these steps: ### Step 1: Apply the Property of Exponents We know that when multiplying two powers with the same base, we can add the exponents. Here, the base is \(-\frac{1}{4}\). \[ \left(-\frac{1}{4}\right)^{-3} \times \left(-\frac{1}{4}\right)^{2} = \left(-\frac{1}{4}\right)^{-3 + 2} \] ### Step 2: Simplify the Exponent Now, simplify the exponent: \[ -3 + 2 = -1 \] So, we have: \[ \left(-\frac{1}{4}\right)^{-1} \] ### Step 3: Apply the Negative Exponent Rule According to the rule for negative exponents, \(\left(a\right)^{-n} = \frac{1}{a^n}\). Thus: \[ \left(-\frac{1}{4}\right)^{-1} = \frac{1}{\left(-\frac{1}{4}\right)^{1}} = \frac{1}{-\frac{1}{4}} \] ### Step 4: Simplify the Fraction To simplify \(\frac{1}{-\frac{1}{4}}\), we can multiply by the reciprocal: \[ \frac{1}{-\frac{1}{4}} = -4 \] ### Final Answer Thus, the value of the expression \(\left(-\frac{1}{4}\right)^{-3} \times \left(-\frac{1}{4}\right)^{2}\) is: \[ \boxed{-4} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2A|13 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2B|7 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate {((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1) (ii) ((5)/(8))^(-7)xx((8)/(5))^(-4)

Evaluate [((-2)/3)]^(-3)xx[1/4]^(-4) xx 3^(-1)xx1/6

Find the value of (64)^(-2//3) xx (frac(1)(4))^-2

Evaluate (-1)/3 xx (1/2+1/4)xx((-1)/3 xx 1/2)+((-1)/3 xx 1/4)

Find the sum (3)/(1xx2)xx(1)/(2)+(4)/(2xx3)xx((1)/(2))^(2)+(5)/(3xx4)xx((1)/(2))^(2)+... to n terms.

Evaluate the value 3^((1)/(2))times3^((1)/(4))times3^((1)/(3)) ........ .Infinite terms

Find the value of (-3)+(-8)-:(-4)-2xx(-2) (-3)xx(-4)-:(-2)+(-1)