Home
Class 8
MATHS
Simplify ((1)/(2)) ^(-2) + ((1)/(3)) ^(-...

Simplify `((1)/(2)) ^(-2) + ((1)/(3)) ^(-2) + ((1)/(4)) ^(-2)`

A

`29`

B

`39`

C

`49`

D

`19`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}\), we will follow these steps: ### Step 1: Apply the Negative Exponent Rule The negative exponent rule states that \(a^{-n} = \frac{1}{a^n}\). Therefore, we can rewrite each term in the expression: \[ \left(\frac{1}{2}\right)^{-2} = \frac{1}{\left(\frac{1}{2}\right)^2} = \frac{1}{\frac{1}{4}} = 4 \] \[ \left(\frac{1}{3}\right)^{-2} = \frac{1}{\left(\frac{1}{3}\right)^2} = \frac{1}{\frac{1}{9}} = 9 \] \[ \left(\frac{1}{4}\right)^{-2} = \frac{1}{\left(\frac{1}{4}\right)^2} = \frac{1}{\frac{1}{16}} = 16 \] ### Step 2: Substitute Back into the Expression Now we can substitute these values back into the original expression: \[ 4 + 9 + 16 \] ### Step 3: Perform the Addition Now, we simply add the numbers together: \[ 4 + 9 = 13 \] \[ 13 + 16 = 29 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{29} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2A|13 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2B|7 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

EXAMPLE 13. Simplify: (frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)

Simplify [{(256)^(-(1)/(2))}^(-(1)/(4))]^(2)

Simplify : ((1)/(2)x(1)/(4))+((1)/(2)x6)

Simplify ((3)/(2))^(0)+((1)/(2))^(0)+((1)/(3))^(0)+((1)/(4))^(0)

Simplify: 7(1)/(2)+3(1)/(3)

Simplify : (1/4)^(-2)+\ (1/2)^(-2)+(1/3)^(-2)

Simplify: (-(1)/(2))^(3)xx(2^(2))/(((2)/(3))^(2))

Simplify: [{((-1)/4)^2}^(-2)]^(-1)