Home
Class 8
MATHS
((1)/(2))^(-2) + ((1)/(3))^(-2) + ((1 )/...

`((1)/(2))^(-2) + ((1)/(3))^(-2) + ((1 )/(4))^(-2)` = ?

A

`(61)/(144)`

B

`(144)/(61)`

C

`29`

D

`1/29`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}\), we will follow the steps below: ### Step 1: Apply the Negative Exponent Rule The negative exponent rule states that \(a^{-n} = \frac{1}{a^n}\). Therefore, we can rewrite each term in the expression: \[ \left(\frac{1}{2}\right)^{-2} = \frac{1}{\left(\frac{1}{2}\right)^{2}} = \left(\frac{2}{1}\right)^{2} = 2^{2} = 4 \] \[ \left(\frac{1}{3}\right)^{-2} = \frac{1}{\left(\frac{1}{3}\right)^{2}} = \left(\frac{3}{1}\right)^{2} = 3^{2} = 9 \] \[ \left(\frac{1}{4}\right)^{-2} = \frac{1}{\left(\frac{1}{4}\right)^{2}} = \left(\frac{4}{1}\right)^{2} = 4^{2} = 16 \] ### Step 2: Add the Results Now that we have simplified each term, we can add them together: \[ 4 + 9 + 16 \] ### Step 3: Calculate the Sum Now, we will calculate the sum: \[ 4 + 9 = 13 \] \[ 13 + 16 = 29 \] ### Final Answer Thus, the final answer is: \[ \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = 29 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2B|7 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

EXAMPLE 13. Simplify: (frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)

S=((1)/(2))^(2)+(((1)/(2))^(2)1)/(3)+(((1)/(2))^(3)1)/(4)+(((1)/(2))^(4)1)/(5)+......, then (a)S=ln8-2( b) S=ln((4)/(e))(c)S=ln4+1(d) none of these

Simplify ((3(2)/(3))^(2)-(2 (1)/(2)))/((4(3)/(4))^(2)-(3(1)/(3))^(2))+(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))

((1)/(2)x^(2)-(1)/(2)y^(2)+(1)/(4)z^(2))-((1)/(3)x^2+(1)/(4)y^(2)+(1)/(2)z^(2))+((1)/(4)x^(2)+(1)/(3)y^(2)+(1)/(3)z^(2))

Value of (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))dots(1-(1)/(85^(2)))

The product (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(11^(2)))(1-(1)/(12^(2))) is equal to

The reciprocal of the value of: lim_(x rarr oo)(1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))...(1-(1)/(n^(2)))is

prove that (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) for all natural numbers,n>=1(1-(1)/(n^(2)))=(n+1)/(2n)

Prove the following by the principle of mathematical inductiten: (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) or all natural numbers n>=2.