Home
Class 8
MATHS
The value of x for which ((7)/(12)) ^(-4...

The value of `x` for which `((7)/(12)) ^(-4) xx ((7)/(12))^(3x) = ((7)/(12))^(5) ` is

A

`-1`

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{7}{12}\right)^{-4} \times \left(\frac{7}{12}\right)^{3x} = \left(\frac{7}{12}\right)^{5}\), we can follow these steps: ### Step 1: Apply the property of exponents We know that when multiplying two powers with the same base, we can add the exponents. Therefore, we can rewrite the left side of the equation as: \[ \left(\frac{7}{12}\right)^{-4 + 3x} \] ### Step 2: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ -4 + 3x = 5 \] ### Step 3: Solve for \(x\) Now, we will isolate \(x\): 1. Add 4 to both sides: \[ 3x = 5 + 4 \] \[ 3x = 9 \] 2. Divide both sides by 3: \[ x = \frac{9}{3} \] \[ x = 3 \] ### Final Answer The value of \(x\) is \(3\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2B|7 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

If ((5)/(12)) ^(-4) xx ((5)/(12)) ^(3x) = ((5)/(12))^(5), then x = ?

x+7-(16x)/(3)=12-(7x)/(2)

{(7)/(5)xx((-3)/(12))}+{(7)/(5)xx(5)/(12)}

Find the difrence (7)/(12)-(5)/(12)

Find the following product: ((-7)/(12) + 8) xx ((4)/(10) + (-5)/(12) + (2)/(5))

(12)/(7)+(12)/(7)-(12)/(7)-:(12)/(7)xx(12)/(7)=

x^(5).y^(7)=(x+y)^(12)

5/4-7/6-(-2)/3=\ 3/4 (b) -3/4 (-7)/(12) (d) 7/(12)

(5)/(7)+(-12)/(5)=-(12)/(5)+(5)/(7)

Value of sin((7 pi)/(12))+cos((7 pi)/(12)) is equal to