Home
Class 8
MATHS
If ((5)/(12)) ^(-4) xx ((5)/(12)) ^(3x)...

If ` ((5)/(12)) ^(-4) xx ((5)/(12)) ^(3x) = ((5)/(12))^(5),` then `x = ` ?

A

`-1`

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{5}{12}\right)^{-4} \times \left(\frac{5}{12}\right)^{3x} = \left(\frac{5}{12}\right)^{5}\), we will use the properties of exponents. ### Step-by-step Solution: 1. **Identify the bases and apply the property of exponents**: Since both sides of the equation have the same base \(\frac{5}{12}\), we can use the property of exponents that states \(a^m \times a^n = a^{m+n}\). \[ \left(\frac{5}{12}\right)^{-4} \times \left(\frac{5}{12}\right)^{3x} = \left(\frac{5}{12}\right)^{-4 + 3x} \] 2. **Set the exponents equal to each other**: Now we can equate the exponents since the bases are the same: \[ -4 + 3x = 5 \] 3. **Solve for \(x\)**: To isolate \(3x\), add \(4\) to both sides of the equation: \[ 3x = 5 + 4 \] \[ 3x = 9 \] 4. **Divide by \(3\)**: Now, divide both sides by \(3\) to solve for \(x\): \[ x = \frac{9}{3} \] \[ x = 3 \] ### Final Answer: Thus, the value of \(x\) is \(3\).
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 2C|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    RS AGGARWAL|Exercise TEST PAPER -12 (Fill in the blanks )|5 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos

Similar Questions

Explore conceptually related problems

The value of x for which ((7)/(12)) ^(-4) xx ((7)/(12))^(3x) = ((7)/(12))^(5) is

{(7)/(5)xx((-3)/(12))}+{(7)/(5)xx(5)/(12)}

(3)/(12) of (((2)/(5)+(4)/(15)))/(((3)/(5)-(2)/(5)))= ?

Simplify: ((3)/(11)x(5)/(6))-((9)/(12)x(4)/(3))+((5)/(13)x(6)/(15))

(5)/(7)+(-12)/(5)=-(12)/(5)+(5)/(7)

Find the following product: ((-7)/(12) + 8) xx ((4)/(10) + (-5)/(12) + (2)/(5))

If ""^(12)C_(5) + ^(12)C_(6) = ^(x)C_(6) then x = _________

(sin((5pi)/12)-cos((5pi)/12))/(cos((5pi)/12)+sin((5pi)/12))=