Home
Class 8
MATHS
Find each of the following products: (...

Find each of the following products:
(i) (4x + 5y) (4x - 5y) (ii) `(3x^(2) + 2y^(2)) (3x^(2) - 2y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Problem (i): Find the product of (4x + 5y)(4x - 5y) 1. **Identify the expression**: We have two binomials, (4x + 5y) and (4x - 5y). 2. **Recognize the pattern**: This expression can be recognized as a difference of squares, which follows the formula: \[ (a + b)(a - b) = a^2 - b^2 \] Here, \( a = 4x \) and \( b = 5y \). 3. **Apply the formula**: \[ (4x + 5y)(4x - 5y) = (4x)^2 - (5y)^2 \] 4. **Calculate \( a^2 \) and \( b^2 \)**: \[ (4x)^2 = 16x^2 \quad \text{and} \quad (5y)^2 = 25y^2 \] 5. **Substitute back into the equation**: \[ 16x^2 - 25y^2 \] Thus, the product of (4x + 5y)(4x - 5y) is: \[ \boxed{16x^2 - 25y^2} \] --- ### Problem (ii): Find the product of (3x² + 2y²)(3x² - 2y²) 1. **Identify the expression**: We have two binomials, (3x² + 2y²) and (3x² - 2y²). 2. **Recognize the pattern**: This expression can also be recognized as a difference of squares: \[ (a + b)(a - b) = a^2 - b^2 \] Here, \( a = 3x^2 \) and \( b = 2y^2 \). 3. **Apply the formula**: \[ (3x^2 + 2y^2)(3x^2 - 2y^2) = (3x^2)^2 - (2y^2)^2 \] 4. **Calculate \( a^2 \) and \( b^2 \)**: \[ (3x^2)^2 = 9x^4 \quad \text{and} \quad (2y^2)^2 = 4y^4 \] 5. **Substitute back into the equation**: \[ 9x^4 - 4y^4 \] Thus, the product of (3x² + 2y²)(3x² - 2y²) is: \[ \boxed{9x^4 - 4y^4} \] ---
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6A|20 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6B|26 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (4x - 7y) (4x - 7y) (ii) (3x^(2) - 4y^(2)) (3x^(2) - 4y^(2))

Find each of the following products: (i) (3x + 2y) (3x + 2y) (ii) (4x^(2) + 5) (4x^(2) + 5)

Find each of the following products -4x^(2)y (3x^(2) - 5y)

Find each of the following products : (3x + 2y - 4) xx (x - y + 2)

Find each of the following products: (i) 5a^(2) b^(2) xx (3a^(2) - 4ab + 6b^(2)) (ii) (-3x^(2)y) xx (4x^(2) y - 3xy^(2) + 4x - 5y)

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Find each of the following products : (2x^(2) - 5y^(2)) xx (x^(2) + 3y^(2))

Find the each of the following products: (2x^(2) - 5y^(2))(x^(2) + 3y^(2))

Find each of the following products: (i) (x + 6) (x + 6) (ii) (4x + 5y) (4x + 5y) (iii) (7a + 9b) (7a + 9b) (iv) ((2)/(3) x + (4)/(5)y) ((2)/(3) x + (4)/(5) y) (v) (x^(2) + 7)(x^(2) + 7) (vi) ((5)/(6) a^(2) + 2) ((5)/(6) a^(2) + 2)