Home
Class 8
MATHS
Add: 2x^(3) - 9x^(2) + 8, 3x^(2) - 6x -...

Add: `2x^(3) - 9x^(2) + 8, 3x^(2) - 6x - 5, 7x^(3) - 10x + 1` and `3 + 2x - 5x^(2) - 4x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the algebraic expressions \(2x^3 - 9x^2 + 8\), \(3x^2 - 6x - 5\), \(7x^3 - 10x + 1\), and \(3 + 2x - 5x^2 - 4x^3\), we will follow these steps: ### Step 1: Write down the expressions We have the following expressions to add: 1. \(2x^3 - 9x^2 + 8\) 2. \(3x^2 - 6x - 5\) 3. \(7x^3 - 10x + 1\) 4. \(3 + 2x - 5x^2 - 4x^3\) ### Step 2: Group like terms We will group the terms based on their degree (the power of \(x\)): - **Cubic terms**: \(2x^3\), \(7x^3\), and \(-4x^3\) - **Quadratic terms**: \(-9x^2\), \(3x^2\), and \(-5x^2\) - **Linear terms**: \(-6x\), \(-10x\), and \(2x\) - **Constant terms**: \(8\), \(-5\), and \(3\) ### Step 3: Add the cubic terms \[ 2x^3 + 7x^3 - 4x^3 = (2 + 7 - 4)x^3 = 5x^3 \] ### Step 4: Add the quadratic terms \[ -9x^2 + 3x^2 - 5x^2 = (-9 + 3 - 5)x^2 = -11x^2 \] ### Step 5: Add the linear terms \[ -6x - 10x + 2x = (-6 - 10 + 2)x = -14x \] ### Step 6: Add the constant terms \[ 8 - 5 + 3 = 6 \] ### Step 7: Combine all the results Now, we combine all the terms we calculated: \[ 5x^3 - 11x^2 - 14x + 6 \] ### Final Answer Thus, the sum of the given algebraic expressions is: \[ \boxed{5x^3 - 11x^2 - 14x + 6} \]
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6B|26 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6C|15 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6E (Tick the correct answer in each of the following:)|19 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Add: 5x^(2) - 7x + 3, -8x^(2) + 2x -5 and 7x^(2) - x - 2

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

Add 7x^(2) -8x + 5, 3x^(2) -8x +5 and -6x^(2) + 15x - 5

Add: 5x^(2) + 3x - 8, 4x + 7 - 2x^(2) and 6 - 5x + 4x^(2)

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

12x - [3x^(2) + 5x^(2) - {7x^(2) - (4 - 3x - x^(3)) + 6x^(3)}-3x]

simplify: (i) 2p^(3) - 3p^(2) + 4p - 5- 6p^(3) + 2p^(2) - 8p - 2 + 6p + 8 (ii) 2x^(2) - xy + 6x - 4y + 5xy - 4x + 6x^(2) + 3y (iii) x^(4) - 6x^(3) + 2x - 7 + 7x^(3) - x + 5x^(2) + 2 - x^(4)