Home
Class 8
MATHS
Add: 6p + 4q - r + 3, 3r - 5p - 6, 11q...

Add:
`6p + 4q - r + 3, 3r - 5p - 6, 11q - 7p + 2r - 1 and 2q - 3r + 4 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the algebraic expressions \(6p + 4q - r + 3\), \(3r - 5p - 6\), \(11q - 7p + 2r - 1\), and \(2q - 3r + 4\), we will follow these steps: ### Step 1: Write down all the expressions We have the following expressions to add: 1. \(6p + 4q - r + 3\) 2. \(3r - 5p - 6\) 3. \(11q - 7p + 2r - 1\) 4. \(2q - 3r + 4\) ### Step 2: Combine like terms We will group the like terms (terms with the same variable) from all four expressions. - For \(p\) terms: \(6p - 5p - 7p\) - For \(q\) terms: \(4q + 11q + 2q\) - For \(r\) terms: \(-r + 3r + 2r - 3r\) - For constant terms: \(3 - 6 - 1 + 4\) ### Step 3: Calculate each group Now we will calculate each group of like terms: 1. **For \(p\) terms:** \[ 6p - 5p - 7p = (6 - 5 - 7)p = -6p \] 2. **For \(q\) terms:** \[ 4q + 11q + 2q = (4 + 11 + 2)q = 17q \] 3. **For \(r\) terms:** \[ -r + 3r + 2r - 3r = (-1 + 3 + 2 - 3)r = 1r = r \] 4. **For constant terms:** \[ 3 - 6 - 1 + 4 = (3 - 6 - 1 + 4) = 0 \] ### Step 4: Combine the results Now we combine all the results from the calculations: \[ -6p + 17q + r + 0 \] ### Final Result Thus, the sum of the given algebraic expressions is: \[ -6p + 17q + r \]
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6B|26 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6C|15 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6E (Tick the correct answer in each of the following:)|19 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Subtract : -6p + q + 3r + 8" from "p - 2q - 5r - 8

The following are the steps in finding the matrix B, if B + ({:(2, 3), (4, 5):}) = ({:(5, 4), (3, 2):}) . Arrange them in sequential order. (A) therefore ({:(p, q), (r, s):}) + ({:(2, 3), (4, 5):}) = ({:(5, 4), (3, 2):}) (B) Let B = ({:(p, q), (r, s):}) (C) ({:(p+2, q+3), (r+4, s+5):}) = ({:(5, 4), (3, 2):}) (D) P + 2 = 5, q + 3 = 4, r+ 4 = 3, s + 5 = 2 rArr p = 3, q = 1, r = -1, s = -3 (E) therefore B = ({:(3, 1), (-1, -3):})

If [ [a + 1, a + 2, a + p],[ a + 2, a + 3, a + q],[ a + 3, a + 4, a + r] ] = 0 , then p , q , r are in : [ (1) A P (2) GP (3) H P (4) none

If P: Q = 2 : 3 , Q : R = 5 : 7 and R : S = 3 : 10 then P : S = ?

If p : q :r :s = 3 : 4 : 7 : 8 and p+s=55 , then find q + r.

If p, q and r are perpendicular to q + r, r + p and p + q respectively and if |p + q| = 6, |q + r| = 4sqrt(3) and |r + p| = 4, then |p + q + r| is