Home
Class 8
MATHS
Subtract : 5y^(4) - 3y^(3) + 2y^(2) + ...

Subtract :
`5y^(4) - 3y^(3) + 2y^(2) + y - 1` from `4y^(4) - 2y^(3) - 6y^(2) - y + 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of subtracting the algebraic expression \( 5y^{4} - 3y^{3} + 2y^{2} + y - 1 \) from \( 4y^{4} - 2y^{3} - 6y^{2} - y + 5 \), we will follow these steps: ### Step 1: Write the expression for subtraction We start by writing the expression for the subtraction: \[ (4y^{4} - 2y^{3} - 6y^{2} - y + 5) - (5y^{4} - 3y^{3} + 2y^{2} + y - 1) \] ### Step 2: Distribute the negative sign Next, we distribute the negative sign across the second expression: \[ 4y^{4} - 2y^{3} - 6y^{2} - y + 5 - 5y^{4} + 3y^{3} - 2y^{2} - y + 1 \] This changes the signs of the terms in the second expression. ### Step 3: Combine like terms Now we will combine the like terms: - For \( y^{4} \) terms: \( 4y^{4} - 5y^{4} = -1y^{4} \) - For \( y^{3} \) terms: \( -2y^{3} + 3y^{3} = 1y^{3} \) - For \( y^{2} \) terms: \( -6y^{2} - 2y^{2} = -8y^{2} \) - For \( y \) terms: \( -y - y = -2y \) - For the constant terms: \( 5 + 1 = 6 \) ### Step 4: Write the final expression Putting it all together, we have: \[ -y^{4} + y^{3} - 8y^{2} - 2y + 6 \] ### Final Answer: Thus, the result of the subtraction is: \[ -y^{4} + y^{3} - 8y^{2} - 2y + 6 \] ---
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6B|26 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6C|15 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6E (Tick the correct answer in each of the following:)|19 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Subtract : 6x ^(2) - 4 xy + 5y ^(2) from 8y ^(2) + 6 xy - 3x ^(2)

Subtract 5xy-4x^(2)+3y^(2) from 3x^(2)-5y^(2)-4xy

x ^ (2) + y ^ (2) + 1, x ^ (2) + 2y ^ (2) + 3, x ^ (2) + 3y ^ (2) + 4y ^ (2) + 2,2y ^ (2) + 6.3y ^ (2) + 8y ^ (2) + 1.2y ^ (2) + 3.3y ^ (2) +4] |

Subtract 5x^(2)-4y^(2)+6y-3 from 7x^(2)-4xy+8y^(2)+5x-3y

(3y^(2)+5y-4)-(8y-y^(2)-4)

Subtract: -4x from 3y\ (ii) -2x\ from -5y