Home
Class 8
MATHS
Find each of the following products: (...

Find each of the following products:
(i) `(x - 4)(x - 4)` (ii) `(2x - 3y)(2x - 3y)` (iii) `((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y)`
(iv) `(x - (3)/(x)) (x - (3)/(x))` (v) `((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9)` (vi) `((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the products of the given expressions, we will use the identity for the square of a binomial, which states that: \[ (a - b)^2 = a^2 - 2ab + b^2 \] Now, let's solve each part step by step. ### (i) \((x - 4)(x - 4)\) 1. Recognize that this is \((x - 4)^2\). 2. Apply the identity: - Here, \(a = x\) and \(b = 4\). - So, \((x - 4)^2 = x^2 - 2(4)(x) + 4^2\). 3. Calculate: - \(x^2 - 8x + 16\). **Final Answer:** \(x^2 - 8x + 16\) ### (ii) \((2x - 3y)(2x - 3y)\) 1. Recognize that this is \((2x - 3y)^2\). 2. Apply the identity: - Here, \(a = 2x\) and \(b = 3y\). - So, \((2x - 3y)^2 = (2x)^2 - 2(2x)(3y) + (3y)^2\). 3. Calculate: - \(4x^2 - 12xy + 9y^2\). **Final Answer:** \(4x^2 - 12xy + 9y^2\) ### (iii) \(\left(\frac{3}{4}x - \frac{5}{6}y\right)\left(\frac{3}{4}x - \frac{5}{6}y\right)\) 1. Recognize that this is \(\left(\frac{3}{4}x - \frac{5}{6}y\right)^2\). 2. Apply the identity: - Here, \(a = \frac{3}{4}x\) and \(b = \frac{5}{6}y\). - So, \(\left(\frac{3}{4}x - \frac{5}{6}y\right)^2 = \left(\frac{3}{4}x\right)^2 - 2\left(\frac{3}{4}x\right)\left(\frac{5}{6}y\right) + \left(\frac{5}{6}y\right)^2\). 3. Calculate: - \(\frac{9}{16}x^2 - \frac{15}{12}xy + \frac{25}{36}y^2\). **Final Answer:** \(\frac{9}{16}x^2 - \frac{15}{12}xy + \frac{25}{36}y^2\) ### (iv) \(\left(x - \frac{3}{x}\right)\left(x - \frac{3}{x}\right)\) 1. Recognize that this is \(\left(x - \frac{3}{x}\right)^2\). 2. Apply the identity: - Here, \(a = x\) and \(b = \frac{3}{x}\). - So, \(\left(x - \frac{3}{x}\right)^2 = x^2 - 2\left(x\right)\left(\frac{3}{x}\right) + \left(\frac{3}{x}\right)^2\). 3. Calculate: - \(x^2 - 6 + \frac{9}{x^2}\). **Final Answer:** \(x^2 - 6 + \frac{9}{x^2}\) ### (v) \(\left(\frac{1}{3}x^2 - 9\right)\left(\frac{1}{3}x^2 - 9\right)\) 1. Recognize that this is \(\left(\frac{1}{3}x^2 - 9\right)^2\). 2. Apply the identity: - Here, \(a = \frac{1}{3}x^2\) and \(b = 9\). - So, \(\left(\frac{1}{3}x^2 - 9\right)^2 = \left(\frac{1}{3}x^2\right)^2 - 2\left(\frac{1}{3}x^2\right)(9) + 9^2\). 3. Calculate: - \(\frac{1}{9}x^4 - 6x^2 + 81\). **Final Answer:** \(\frac{1}{9}x^4 - 6x^2 + 81\) ### (vi) \(\left(\frac{1}{2}y^2 - \frac{1}{3}y\right)\left(\frac{1}{2}y^2 - \frac{1}{3}y\right)\) 1. Recognize that this is \(\left(\frac{1}{2}y^2 - \frac{1}{3}y\right)^2\). 2. Apply the identity: - Here, \(a = \frac{1}{2}y^2\) and \(b = \frac{1}{3}y\). - So, \(\left(\frac{1}{2}y^2 - \frac{1}{3}y\right)^2 = \left(\frac{1}{2}y^2\right)^2 - 2\left(\frac{1}{2}y^2\right)\left(\frac{1}{3}y\right) + \left(\frac{1}{3}y\right)^2\). 3. Calculate: - \(\frac{1}{4}y^4 - \frac{1}{3}y^3 + \frac{1}{9}y^2\). **Final Answer:** \(\frac{1}{4}y^4 - \frac{1}{3}y^3 + \frac{1}{9}y^2\) ---
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6E (Tick the correct answer in each of the following:)|19 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6C|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (x + 6) (x + 6) (ii) (4x + 5y) (4x + 5y) (iii) (7a + 9b) (7a + 9b) (iv) ((2)/(3) x + (4)/(5)y) ((2)/(3) x + (4)/(5) y) (v) (x^(2) + 7)(x^(2) + 7) (vi) ((5)/(6) a^(2) + 2) ((5)/(6) a^(2) + 2)

Find each of the following products: (i) (4x + 5y) (4x - 5y) (ii) (3x^(2) + 2y^(2)) (3x^(2) - 2y^(2))

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Find the continued product: (i) (x + 1)(x - 1) (x^(2) + 1) (ii) (x - 3)(x + 3)(x^(2) + 9) (iii) (3x - 2y)(3x + 2y)(9x^(2) + 4y^(2)) (iv) (2p + 3)(2p - 3)(4p^(2) + 9)

Find the centre and radius of each of the following circles : (i) (x - 3)^(2) + (y- 1) ^(2) = 9 (ii) (x - (1)/(2) ) ^(2) + ( y + (1)/(3) ) ^(2) = (1)/(16) (iii) (x + 5) ^(2) + ( y- 3 ) ^(2) = 20 (iv) x ^(2) + (y- 1 ) ^(2) = 2

Find the following products: (x+2)(x+3) (ii) (x+7)(x-2)y-4)(y-3)( iv )(y-7)(y+3)(2x-3)(2x+5)( vi )(3x+4)(3x-5)

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

Use suitable identities to find the following products: (i) (x+4)(x+10) (ii) (x+8)(x-10) (iii) (3x+4)(3x-5) (iv) (y^2+3/2)(y^2-3/2) (v) (3-2x)(3+2x)