Home
Class 8
MATHS
Using the formula for squaring a binomia...

Using the formula for squaring a binomial evaluate the following:
(i) `(69)^(2)` (ii) `(78)^(2)` (iii) `(197)^(2)` (iv) `(999)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the squares of the given numbers using the formula for squaring a binomial, we will use the identity: \[ (a - b)^2 = a^2 + b^2 - 2ab \] Now, let's solve each part step by step. ### (i) Evaluating \( (69)^2 \) 1. **Rewrite 69**: We can express 69 as \( 70 - 1 \). 2. **Apply the formula**: Using the identity, we have: \[ (70 - 1)^2 = 70^2 + 1^2 - 2 \cdot 70 \cdot 1 \] 3. **Calculate each term**: - \( 70^2 = 4900 \) - \( 1^2 = 1 \) - \( 2 \cdot 70 \cdot 1 = 140 \) 4. **Combine the results**: \[ 4900 + 1 - 140 = 4901 - 140 = 4761 \] **Final answer for (i)**: \( 4761 \) --- ### (ii) Evaluating \( (78)^2 \) 1. **Rewrite 78**: We can express 78 as \( 80 - 2 \). 2. **Apply the formula**: Using the identity, we have: \[ (80 - 2)^2 = 80^2 + 2^2 - 2 \cdot 80 \cdot 2 \] 3. **Calculate each term**: - \( 80^2 = 6400 \) - \( 2^2 = 4 \) - \( 2 \cdot 80 \cdot 2 = 320 \) 4. **Combine the results**: \[ 6400 + 4 - 320 = 6404 - 320 = 6084 \] **Final answer for (ii)**: \( 6084 \) --- ### (iii) Evaluating \( (197)^2 \) 1. **Rewrite 197**: We can express 197 as \( 200 - 3 \). 2. **Apply the formula**: Using the identity, we have: \[ (200 - 3)^2 = 200^2 + 3^2 - 2 \cdot 200 \cdot 3 \] 3. **Calculate each term**: - \( 200^2 = 40000 \) - \( 3^2 = 9 \) - \( 2 \cdot 200 \cdot 3 = 1200 \) 4. **Combine the results**: \[ 40000 + 9 - 1200 = 40009 - 1200 = 38809 \] **Final answer for (iii)**: \( 38809 \) --- ### (iv) Evaluating \( (999)^2 \) 1. **Rewrite 999**: We can express 999 as \( 1000 - 1 \). 2. **Apply the formula**: Using the identity, we have: \[ (1000 - 1)^2 = 1000^2 + 1^2 - 2 \cdot 1000 \cdot 1 \] 3. **Calculate each term**: - \( 1000^2 = 1000000 \) - \( 1^2 = 1 \) - \( 2 \cdot 1000 \cdot 1 = 2000 \) 4. **Combine the results**: \[ 1000000 + 1 - 2000 = 1000001 - 2000 = 998001 \] **Final answer for (iv)**: \( 998001 \) --- ### Summary of Answers: - (i) \( 4761 \) - (ii) \( 6084 \) - (iii) \( 38809 \) - (iv) \( 998001 \)
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6E (Tick the correct answer in each of the following:)|19 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6C|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Using the formula for squaring a binomial, evaluate the following: (999)^(2) (ii) (703)^(2)

Using the formula for squaring a binomial evaluate the following (i) (101)^(2) (ii) (99)^(2) (iii) (930^(2))

Using the formula for squaring a binomial, evaluate the following: (i) (54)^(2) (ii) (82)^(2) (iii) (103)^(2) (iv) (704)^(2)

Using the formulae for squaring a binomial, evaluate the following : (101)^(2) (ii) (99)^(2) (iii) (93)^(2)

Using the formula for squaring a binomial, evaluate the following: (102)^(2) (ii) (99)^(2) (iii) (1001)^(2)

Using binomial theorem, evaluate each of the following: (i) (104)^(4) (ii) (98)^(4) (iii) (1.2)^(4)

Evaluate using formula : (i) (188)^(2) " " (ii) (9.4)^(2) " " (iii) (10.9)^(2)

Evaluate the following using identities: (i) (105)^(2) (ii) (47)^(2) (iii) (8.3 xx 7.7)

Evaluate: (i) (1.0)^(2) (ii) (0.7)^(2) (iii) (0.04)^(2) (iv) (0.11)^(2)

Evaluate (i) (99)^2 (ii) (995)^2 (iii) (107)^2