Home
Class 8
MATHS
Factorise each of the 6ab-9ab...

Factorise each of the
`6ab-9ab`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(6ab - 9ab\), we can follow these steps: ### Step 1: Identify the common factor Look for the common factor in both terms of the expression \(6ab\) and \(9ab\). The common factor here is \(3ab\). ### Step 2: Factor out the common factor We can factor out \(3ab\) from both terms: \[ 6ab - 9ab = 3ab(2 - 3) \] ### Step 3: Simplify the expression inside the brackets Now, simplify the expression inside the brackets: \[ 2 - 3 = -1 \] So, we can rewrite the expression as: \[ 3ab(-1) \] ### Step 4: Write the final factored form Thus, the final factored form of the expression \(6ab - 9ab\) is: \[ -3ab \] ### Summary of the solution The expression \(6ab - 9ab\) can be factored as: \[ -3ab \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise each of the following : (i) 8a^(3)+b^(3)+12a^(2)b+6ab^(2) (ii) 8a^(3)-b^(3)-12a^(2)b+6ab^(2) (iii) 27-125a^(3)-135a+225a^(2) (iv) 64a^(3)-27b^(3)-144a^(2)b+108ab^(2) (v) 27p^(3)-(1)/(216)-(9)/(2)p^(2)+(1)/(4)p

Factorize each of the following expressions: 6ab-b^(2)+12ac-2bc,a(a+b-c)-bc

Factorize each of the following expressions: a^(6)-b^(6)( ii) a^(6)+b^(6) (iii) a^(7)+ab^(6)

Factorize each of the following : (i)8a^(3)+b^(3)+12a^(2)b+6ab^(2)(ii)27p^(3)-(9)/(2)p^(2)+(p)/(4)-(1)/(216)

Factorise: a ^(2) + bc+ ab +ac

Factorise: ab ^(2) - bc^(2) - ab + c^(2)

Factorise : 1 + 2 ab - (a ^(2) + b ^(2))

Factorise: x^(2)-ax-bx + ab

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 6ax + 9