Home
Class 8
MATHS
Factorise: ax ^(2) + by^(2) + bx^(2) ...

Factorise:
` ax ^(2) + by^(2) + bx^(2) + ay^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( ax^2 + by^2 + bx^2 + ay^2 \), we can follow these steps: ### Step 1: Rearrange the terms We can rearrange the terms in the expression for easier grouping: \[ ax^2 + bx^2 + ay^2 + by^2 \] ### Step 2: Group the terms Now, we can group the first two terms together and the last two terms together: \[ (ax^2 + bx^2) + (ay^2 + by^2) \] ### Step 3: Factor out the common factors In the first group \( ax^2 + bx^2 \), we can factor out \( x^2 \): \[ x^2(a + b) \] In the second group \( ay^2 + by^2 \), we can factor out \( y^2 \): \[ y^2(a + b) \] ### Step 4: Combine the factored terms Now we can combine the factored terms: \[ x^2(a + b) + y^2(a + b) \] ### Step 5: Factor out the common binomial Since \( (a + b) \) is common in both terms, we can factor it out: \[ (a + b)(x^2 + y^2) \] ### Final Answer Thus, the factorised form of the expression \( ax^2 + by^2 + bx^2 + ay^2 \) is: \[ (a + b)(x^2 + y^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x^(2)-ax-bx + ab

Fractorise: (ax + by) ^(2) + (bx - ay)^(2)

Factorize: ax+bx+ay+byax^(2)+by^(2)+bx^(2)+ay^(2),a^(2)+bc+ab+acax-ay+bx-by

Factorise x^(2) + a^(2) + 2a + 2x + 2ax .

ax^(2)+bx+c

Factoris the expression. 2ax ^(2) + 4 axy + 3bx ^(2) + 2 ay ^(2) + 6 bxy + 3 by ^(2)

2 (ax+by)^(2)-(bx+ay)^(2)

Factorise the expression using the identity a ^(2) -b ^(2) = (a +b) (a-b). 28 ay ^(2) - 175 ax ^(2)