Home
Class 8
MATHS
Factorise: 1+ a + ac + a^(2)c...

Factorise:
`1+ a + ac + a^(2)c`

A

`(1 - a)(1 + ac)`

B

`(1 + a)(1 + ac)`

C

`a(1 + ac)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(1 + a + ac + a^2c\), we can follow these steps: ### Step 1: Group the terms We can group the terms in pairs to make it easier to factor. We can group \(1 + a\) and \(ac + a^2c\). \[ (1 + a) + (ac + a^2c) \] ### Step 2: Factor out the common terms Now, we can factor out the common terms from each group. The first group \(1 + a\) remains as it is, and from the second group \(ac + a^2c\), we can factor out \(ac\). \[ (1 + a) + ac(1 + a) \] ### Step 3: Factor out the common binomial Now we see that both terms have a common factor of \(1 + a\). We can factor \(1 + a\) out. \[ (1 + a)(1 + ac) \] ### Final Result Thus, the factorised form of the expression \(1 + a + ac + a^2c\) is: \[ (1 + a)(1 + ac) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise : 1 + 2 ab - (a ^(2) + b ^(2))

Factorise: 6ab - b ^(2) + 12 ac - 2bc

Factorise: ab (c ^(2) +1) + c (a ^(2) + b ^(2))

Factorise : a ^(2) + (1)/(a ^(2)) + 3 - 2a - (2)/(a)

Factorise : 4b ^(2) - 1 - 2a - a ^(2).

Factorise: ab ^(2) - bc^(2) - ab + c^(2)

Factorise: a ^(2) + bc+ ab +ac

Factorise : x^(4)-1