Home
Class 8
MATHS
Factorise: xy - pq+qy-px...

Factorise:
`xy - pq+qy-px`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( xy - pq + qy - px \), follow these steps: ### Step 1: Rearrange the terms Rearranging the terms helps in grouping them effectively. We can write the expression as: \[ xy - px + qy - pq \] ### Step 2: Group the terms Now, we can group the terms into two pairs: \[ (xy - px) + (qy - pq) \] ### Step 3: Factor out the common factors from each group In the first group \( xy - px \), we can factor out \( x \): \[ x(y - p) \] In the second group \( qy - pq \), we can factor out \( q \): \[ q(y - p) \] ### Step 4: Combine the factored groups Now we can combine the two factored groups: \[ x(y - p) + q(y - p) \] ### Step 5: Factor out the common binomial factor Since \( (y - p) \) is common in both terms, we can factor it out: \[ (y - p)(x + q) \] ### Final Answer Thus, the factorised form of the expression \( xy - pq + qy - px \) is: \[ (y - p)(x + q) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise : px-5q-5x+pq

Factorise : 6xy-4y+6-9x

Factorise: x ^(2) - xy + y -x

Factorise: x ^(2) - xz + xy - yz

Factorise : x^2+y-xy-x

Factorise: y ^(2) - xy (1-x)-x ^(3)

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Factorise : x-8xy^(3)

Factorise: 8x ^(2) -72xy + 12x