Home
Class 8
MATHS
Fractorise: ab (x ^(2) + y^(2) ) + xy (a...

Fractorise: `ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).`

A

` (bx-ay) (ax+ by)`

B

` (bx+ay) (ax+ by)`

C

`(bx+ay) (ax- by)`

D

`(bx-ay) (ax- by)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( ab (x^2 + y^2) + xy (a^2 + b^2) \), we can follow these steps: ### Step 1: Expand the expression First, we will expand the expression to understand its components better. \[ ab(x^2 + y^2) + xy(a^2 + b^2) = abx^2 + aby^2 + xya^2 + xyb^2 \] ### Step 2: Rearrange the terms Next, we can rearrange the terms in a way that groups similar terms together. \[ = abx^2 + xya^2 + xyb^2 + aby^2 \] ### Step 3: Group the terms Now, we will group the terms in pairs to factor them more easily. \[ = (abx^2 + aby^2) + (xya^2 + xyb^2) \] ### Step 4: Factor out common factors from each group Now, we will factor out the common factors from each group. From the first group \( abx^2 + aby^2 \), we can factor out \( ab \): \[ = ab(x^2 + y^2) \] From the second group \( xya^2 + xyb^2 \), we can factor out \( xy \): \[ = xy(a^2 + b^2) \] Putting it all together, we have: \[ = ab(x^2 + y^2) + xy(a^2 + b^2) \] ### Step 5: Identify common factors Now we can see that both parts of the expression share a common factor. We can factor out \( (bx + ya) \): \[ = (bx + ya)(a + b) \] ### Final Factored Form Thus, the final factored form of the expression is: \[ = (bx + ya)(a + b) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Fractorise: 12x ^(2) - 27

Fractorise: 20a ^(2) - 45 b ^(2)

Fractorise: 81-49x ^(2)

Fractorise: 63a ^(2) - 112b^(2)

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: ab ^(2) + (a -1) b-1

Fractorise: 1- (b-c)^(2)

Fractorise: 4x ^(2) -9y^(2)