Home
Class 8
MATHS
Factorise: <b> y^(2)-121...

Factorise: `y^(2)-121`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^2 - 121 \), we can follow these steps: ### Step 1: Recognize the difference of squares The expression \( y^2 - 121 \) can be recognized as a difference of squares. The general form of a difference of squares is \( a^2 - b^2 \), which can be factored into \( (a + b)(a - b) \). ### Step 2: Identify \( a \) and \( b \) In our case: - \( a^2 = y^2 \) implies \( a = y \) - \( b^2 = 121 \) implies \( b = 11 \) (since \( 11^2 = 121 \)) ### Step 3: Apply the difference of squares formula Now we can apply the difference of squares formula: \[ y^2 - 121 = (y + 11)(y - 11) \] ### Step 4: Write the final answer Thus, the factorised form of \( y^2 - 121 \) is: \[ (y + 11)(y - 11) \] ### Final Answer: \[ y^2 - 121 = (y + 11)(y - 11) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: y ^(2) - 21y + 90

Factorise the y ^(2)- 2y - 15

Factorise :4y^(2)-12y+9

Factorise: 7y^(2) - 19y -6

Factorise: y ^(2) + y-72

Factorise: 3y ^(2) + 14y + 8

Factorise: y ^(2) + 10y +24

Factorise: y ^(2) + 19y + 60

Factorise: y ^(2)- 6y - 135

Factorise: (2x +5y)^2-1