Home
Class 8
MATHS
Factorise: x ^(2) - 20x+ 100...

Factorise:
`x ^(2) - 20x+ 100`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the quadratic expression \( x^2 - 20x + 100 \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the coefficients**: The expression is in the standard form \( ax^2 + bx + c \) where: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = -20 \) (coefficient of \( x \)) - \( c = 100 \) (constant term) 2. **Find two numbers that multiply to \( ac \) and add to \( b \)**: We need to find two numbers that multiply to \( a \cdot c = 1 \cdot 100 = 100 \) and add up to \( b = -20 \). Since we need a sum of \(-20\) and a product of \(100\), we can consider the pairs of factors of \(100\): - \( (1, 100) \) - \( (2, 50) \) - \( (4, 25) \) - \( (5, 20) \) - \( (10, 10) \) The only pair that gives a sum of \(-20\) is \((-10, -10)\). 3. **Rewrite the middle term**: We can rewrite \(-20x\) as \(-10x - 10x\): \[ x^2 - 10x - 10x + 100 \] 4. **Group the terms**: Now, we group the first two terms and the last two terms: \[ (x^2 - 10x) + (-10x + 100) \] 5. **Factor out the common terms**: From the first group \( (x^2 - 10x) \), we can factor out \( x \): \[ x(x - 10) \] From the second group \( (-10x + 100) \), we can factor out \(-10\): \[ -10(x - 10) \] Putting it all together, we have: \[ x(x - 10) - 10(x - 10) \] 6. **Factor out the common binomial**: Now we can factor out the common binomial \( (x - 10) \): \[ (x - 10)(x - 10) \] or simply: \[ (x - 10)^2 \] ### Final Answer: The factorised form of \( x^2 - 20x + 100 \) is: \[ (x - 10)^2 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(2) - 10x + 24

Factorise: x ^(2) - 23x + 42

Factorise: x ^(2) - 9x + 20

Factorise: 64-x ^(2)

Factorise: x ^(2) - 4x -12

Factorise: 3x ^(2) - 4x -4

Factorise: 6x ^(2) - 5x -6

Factorise: x ^(2) - 5x - 24

Factorise: x ^(2) - 7x- 30

Factorise: x^(2)-36