Home
Class 8
MATHS
Factorise: x^(2) + 15 x + 56...

Factorise:
`x^(2) + 15 x + 56`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the quadratic expression \( x^2 + 15x + 56 \), we can follow these steps: ### Step 1: Identify the coefficients The given quadratic expression is in the form \( ax^2 + bx + c \), where: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = 15 \) (coefficient of \( x \)) - \( c = 56 \) (constant term) ### Step 2: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that: - Multiply to \( ac = 1 \times 56 = 56 \) - Add up to \( b = 15 \) ### Step 3: List the factor pairs of 56 The factor pairs of 56 are: - \( 1 \times 56 \) - \( 2 \times 28 \) - \( 4 \times 14 \) - \( 7 \times 8 \) ### Step 4: Identify the correct pair Among these pairs, we look for the pair that adds up to 15. The pair \( 7 \) and \( 8 \) satisfies this condition: - \( 7 + 8 = 15 \) - \( 7 \times 8 = 56 \) ### Step 5: Rewrite the middle term We can rewrite the expression by splitting the middle term \( 15x \) into \( 7x + 8x \): \[ x^2 + 7x + 8x + 56 \] ### Step 6: Group the terms Now, we can group the terms: \[ (x^2 + 7x) + (8x + 56) \] ### Step 7: Factor out the common factors From the first group \( (x^2 + 7x) \), we can factor out \( x \): \[ x(x + 7) \] From the second group \( (8x + 56) \), we can factor out \( 8 \): \[ 8(x + 7) \] ### Step 8: Combine the factors Now we can combine the factored terms: \[ x(x + 7) + 8(x + 7) = (x + 7)(x + 8) \] ### Final Result Thus, the factorised form of the expression \( x^2 + 15x + 56 \) is: \[ (x + 7)(x + 8) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x^(2) + 8x +15

Factorise: x^(2)-36

Factorise: x^(2) + x-56

Factorise: x^(2) + 5x +6

Factorise: x ^(2) + 15x + 56

Factorise: 3x^(2) + 10 x + 8

Factorise: x^(2)+ 10 x + 25

Factorise: x ^(2) - 5x - 24

Factorise: 6x ^(2) - 5x -6

Factorise: 64-x ^(2)