Home
Class 8
MATHS
Factorise: x^(2) + x-56...

Factorise:
`x^(2) + x-56`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 + x - 56 \), we will follow these steps: ### Step 1: Identify the coefficients The expression is in the form \( ax^2 + bx + c \), where: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = 1 \) (coefficient of \( x \)) - \( c = -56 \) (constant term) ### Step 2: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \( a \cdot c = 1 \cdot (-56) = -56 \) and add to \( b = 1 \). ### Step 3: List factor pairs of \(-56\) The factor pairs of \(-56\) that we can consider are: - \( (1, -56) \) - \( (-1, 56) \) - \( (2, -28) \) - \( (-2, 28) \) - \( (4, -14) \) - \( (-4, 14) \) - \( (7, -8) \) - \( (-7, 8) \) ### Step 4: Identify the correct pair We need a pair that adds up to \( 1 \). The pair \( (8, -7) \) works because: - \( 8 + (-7) = 1 \) - \( 8 \times (-7) = -56 \) ### Step 5: Rewrite the middle term We can rewrite the expression \( x^2 + x - 56 \) using the numbers we found: \[ x^2 + 8x - 7x - 56 \] ### Step 6: Group the terms Now, we group the terms: \[ (x^2 + 8x) + (-7x - 56) \] ### Step 7: Factor by grouping Factor out the common terms in each group: \[ x(x + 8) - 7(x + 8) \] ### Step 8: Factor out the common binomial Now, we can factor out the common binomial \( (x + 8) \): \[ (x + 8)(x - 7) \] ### Final Result Thus, the factorised form of the expression \( x^2 + x - 56 \) is: \[ (x + 8)(x - 7) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x^(2)-36

Factorise: 6x ^(2) - 5x -6

Factorise: 64-x ^(2)

Factorise: x^(2) + 8x +15

Factorise: x^(2) + 5x +6

Factorise: x^(2) + 15 x + 56

Factorise: x ^(2) + x - 132

Factorise: 2x ^(2) + x - 45

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy