Home
Class 8
MATHS
Factorise: 12x ^(2) y ^(3) - 21x^(3) y...

Factorise:
`12x ^(2) y ^(3) - 21x^(3) y ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 12x^2y^3 - 21x^3y^2 \), we will follow these steps: ### Step 1: Identify the common factors First, we need to identify the common factors in both terms of the expression. The coefficients are 12 and 21. The greatest common divisor (GCD) of 12 and 21 is 3. Next, we look at the variables: - For \( x^2 \) and \( x^3 \), the common factor is \( x^2 \). - For \( y^3 \) and \( y^2 \), the common factor is \( y^2 \). Thus, the common factor for the entire expression is \( 3x^2y^2 \). ### Step 2: Factor out the common factor Now, we will factor out \( 3x^2y^2 \) from each term in the expression: \[ 12x^2y^3 - 21x^3y^2 = 3x^2y^2(4y - 7x) \] ### Step 3: Write the final factored form The final factored form of the expression is: \[ 3x^2y^2(4y - 7x) \] ### Summary of Steps: 1. Identify the GCD of the coefficients and the common variables. 2. Factor out the common factor from the expression. 3. Write the expression in its factored form. ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 12x^(2)y+18xy^(2)

Factorise: 4x ^(2) + 9y^(2) + 12 xy

Factorise: 14 x ^(3) + 21x ^(4) y - 28 x ^(2) y ^(2)

Factorise: 9x ^(3)- 6x ^(2)+ 12x

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)

Factorise: 36x ^(3) y - 60x ^(2) y ^(3) z

Factorise 8x^(2)y^(3)-x^(5)

Factorise: y ^(2) - xy (1-x)-x ^(3)

Factorise 24x^(3)-375y^(3)

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)