Home
Class 8
MATHS
Factorise: 10x ^(3)-15 x ^(2)...

Factorise:
`10x ^(3)-15 x ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(10x^3 - 15x^2\), we will follow these steps: ### Step 1: Identify the common factors First, we need to identify the common factors in the terms \(10x^3\) and \(15x^2\). - The coefficients are 10 and 15. The greatest common factor (GCF) of 10 and 15 is 5. - For the variable part, \(x^3\) and \(x^2\), the common factor is \(x^2\) (the lowest power of x). ### Step 2: Factor out the common factors Now, we will factor out the GCF, which is \(5x^2\). \[ 10x^3 - 15x^2 = 5x^2(2x) - 5x^2(3) \] ### Step 3: Write the expression in factored form Now we can combine the factored terms: \[ 10x^3 - 15x^2 = 5x^2(2x - 3) \] ### Final Answer Thus, the factorised form of \(10x^3 - 15x^2\) is: \[ 5x^2(2x - 3) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(3) - 3x ^(2) + 3x + 7

Factorise: 9x ^(3)- 6x ^(2)+ 12x

Factorise: 3x ^(2)-48

Factorise: x^(3)-25x

Factorise: 6x ^(2) - 17x -3

Factorise: x ^(3) + (1)/(x ^(3)) - 2

Factorise: 3x ^(2) - 4x -4

Factorise x^(4) + x^(3) - x^(2) - x .

Factorise x^(3)-7x+6 .

Factorise: 15x ^(2)- 26 x + 8