Home
Class 8
MATHS
Factorise: 36x ^(3) y - 60x ^(2) y ^(3...

Factorise:
`36x ^(3) y - 60x ^(2) y ^(3) z`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 36x^3y - 60x^2y^3z \), we will follow these steps: ### Step 1: Identify the common factors First, we need to find the greatest common factor (GCF) of the coefficients (36 and 60) and the variables in the expression. - The coefficients are 36 and 60. The GCF of 36 and 60 is 12. - For the variable \( x \), the lowest power is \( x^2 \) (since we have \( x^3 \) and \( x^2 \)). - For the variable \( y \), the lowest power is \( y \) (since we have \( y \) and \( y^3 \)). ### Step 2: Write the common factor Now we can write the common factor: \[ \text{Common factor} = 12x^2y \] ### Step 3: Factor out the common factor Next, we will factor out \( 12x^2y \) from the expression: \[ 36x^3y - 60x^2y^3z = 12x^2y(3x - 5y^2z) \] ### Step 4: Write the final factored form Thus, the final factored form of the expression is: \[ 12x^2y(3x - 5y^2z) \] ### Summary of the solution The expression \( 36x^3y - 60x^2y^3z \) can be factored as: \[ 12x^2y(3x - 5y^2z) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

24x ^(3) - 36x ^(2)y

Factorise : 36x^(4) - 84x^(2)y^(2) +49y^(4)

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorise : (i) 36x^(2)+60xy+25y^(2) (ii) (49)/(9)x^(2)-(35)/(6)xy+(25)/(16)y^(2)

Factorise x^(2)-(y-z)^(2) .

Factorise : 8x^3 - (2x-y)^3

Factorise 8x^(3)+27y^(3)+36x^(2)y+54xy^(2)

Factorise: 25(x+y)^(2)- 36 (x-2y)^(2).

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy