Home
Class 8
MATHS
Factorise: 14 x ^(3) + 21x ^(4) y - 28...

Factorise:
`14 x ^(3) + 21x ^(4) y - 28 x ^(2) y ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 14x^3 + 21x^4y - 28x^2y^2 \), we will follow these steps: ### Step 1: Identify the common factors First, we need to identify the common factors in all the terms of the expression. The coefficients are 14, 21, and -28. The greatest common divisor (GCD) of these numbers is 7. Next, we look at the variable part. The terms are \( x^3 \), \( x^4y \), and \( x^2y^2 \). The lowest power of \( x \) is \( x^2 \), and the lowest power of \( y \) is \( y^0 \) (which means \( y \) is not present in the first term). Thus, we can take \( x^2 \) as a common factor. ### Step 2: Factor out the common factor Now we can factor out \( 7x^2 \) from the expression: \[ 14x^3 + 21x^4y - 28x^2y^2 = 7x^2(2x) + 7x^2(3x^2y) - 7x^2(4y^2) \] ### Step 3: Rewrite the expression After factoring out \( 7x^2 \), we can rewrite the expression inside the parentheses: \[ = 7x^2(2x + 3x^2y - 4y^2) \] ### Step 4: Check for further factorization Now we need to check if the expression \( 2x + 3x^2y - 4y^2 \) can be factored further. In this case, it does not seem to have any common factors or be factorable into simpler binomials. Thus, the final factorized form of the expression is: \[ \boxed{7x^2(2x + 3x^2y - 4y^2)} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 4x ^(2) - y ^(2)+ 6y-9.

Factorise: 12x ^(2) y ^(3) - 21x^(3) y ^(2)

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)

Factorise : 16 (2x - y) ^(2) - 24 (4x ^(2) - y ^(2) ) + 9 ( 2x + y) ^(2)

Factorise: x ^(2) - xy + y -x

Factorise: y ^(2) - xy (1-x)-x ^(3)

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)

Factorise the y ^(2) + 4y - 21