Home
Class 8
MATHS
Fractorise: x ^(3) (2a -b) + x^(2) (2a...

Fractorise:
`x ^(3) (2a -b) + x^(2) (2a -b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^3(2a - b) + x^2(2a - b) \), we can follow these steps: ### Step 1: Identify the common factor In the given expression, both terms \( x^3(2a - b) \) and \( x^2(2a - b) \) share a common factor of \( (2a - b) \). ### Step 2: Factor out the common factor We can factor out \( (2a - b) \) from both terms: \[ x^3(2a - b) + x^2(2a - b) = (2a - b)(x^3 + x^2) \] ### Step 3: Factor the remaining expression Now, we need to factor the expression \( x^3 + x^2 \). Here, we can see that \( x^2 \) is a common factor: \[ x^3 + x^2 = x^2(x + 1) \] ### Step 4: Combine the factors Now we can combine the factors we found: \[ (2a - b)(x^2(x + 1)) \] ### Final Answer Thus, the fully factorised form of the expression \( x^3(2a - b) + x^2(2a - b) \) is: \[ (2a - b)x^2(x + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: x ^(3) - 64x

Fractorise: x ^(3)-3x ^(2) + x-3

Fractorise: 12x ^(2) - 27

Fractorise: 81-49x ^(2)

Fractorise: 4x ^(2) -9y^(2)

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 63a ^(2)b ^(2) -7

Fractorise: ab ^(2) + (a -1) b-1

Fractorise: 1- (b-c)^(2)

Fractorise: x ^(2) -y ^(2) - 2y -1