Home
Class 8
MATHS
Factorise: (x +5) ^(2) -4 ( x + 5)...

Factorise:
`(x +5) ^(2) -4 ( x + 5)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (x + 5)^2 - 4(x + 5) \), we can follow these steps: ### Step 1: Identify the common factor We notice that both terms in the expression share a common factor of \( (x + 5) \). ### Step 2: Rewrite the expression We can rewrite the expression by factoring out \( (x + 5) \): \[ (x + 5)^2 - 4(x + 5) = (x + 5) \left( (x + 5) - 4 \right) \] ### Step 3: Simplify the expression inside the parentheses Now, we simplify the expression inside the parentheses: \[ (x + 5) - 4 = x + 5 - 4 = x + 1 \] ### Step 4: Write the final factored form Now we can write the complete factored form: \[ (x + 5)(x + 1) \] Thus, the factorised form of the expression \( (x + 5)^2 - 4(x + 5) \) is: \[ \boxed{(x + 5)(x + 1)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: (2x +5y)^2-1

Factorise: 8 (4x + 5y)^(2) - 12 (4x + 5y)

Factorise : ( 5x -3) ^(2) - ( 5x -3) - 20

Factorise: 28-31 x - 5x ^(2)

Factorise: x ^(2) - 5x - 24

Factorise: (x ^(2) - 5x) ( x ^(2) - 5x - 20) + 84

Factorise: (x - 2y )^(2) + 4x - 8y

Factorise: 6x ^(2) - 5x -6

Factorise: 3x ^(2) - 4x -4

Factorise: x ^(2) - 4x -12