Home
Class 8
MATHS
Factorise: 3 (a-2b)^(2) -5 (a - 2b )...

Factorise:
`3 (a-2b)^(2) -5 (a - 2b )`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 3(a - 2b)^2 - 5(a - 2b) \), we can follow these steps: ### Step 1: Identify the common factor We notice that both terms in the expression share a common factor of \( (a - 2b) \). ### Step 2: Rewrite the expression We can express the original equation by factoring out the common term: \[ 3(a - 2b)^2 - 5(a - 2b) = (a - 2b)(3(a - 2b) - 5) \] ### Step 3: Simplify the expression inside the parentheses Now, we simplify the expression inside the parentheses: \[ 3(a - 2b) - 5 \] ### Step 4: Write the final factored form Putting it all together, we have: \[ (a - 2b)(3(a - 2b) - 5) \] ### Step 5: Further simplify if necessary We can leave it as is or simplify the second term further, but it is already in a good factored form: \[ (a - 2b)(3a - 6b - 5) \] Thus, the final factored form is: \[ (a - 2b)(3a - 6b - 5) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 6a (a -2b ) + 5b (a - 2b )

Factorise (2a + 3b)^(2) - (3a - 2b)^(2) .

Factorise : a(a-2b-c)+2bc

Factorise: 16a ^(2) -225b ^(2)

Factorise: 48a^(2)-243b^(2)

Factorise: 9a (3a-5b) - 12 a ^(2) (3a - 5b )

Factorise: 18a^(3) -27a^(2)b

Factorise a^(2)-9b^(2) .

Factorise: 15ab ^(2) - 20 a ^(2)b