Home
Class 8
MATHS
Fractorise: 16(2p-3q)^(2) -4 (2p - 3q)...

Fractorise:
`16(2p-3q)^(2) -4 (2p - 3q)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 16(2p - 3q)^2 - 4(2p - 3q) \), we can follow these steps: ### Step 1: Identify the common factor We can see that both terms in the expression share a common factor of \( (2p - 3q) \). ### Step 2: Factor out the common term We can factor out \( (2p - 3q) \) from the expression: \[ 16(2p - 3q)^2 - 4(2p - 3q) = (2p - 3q)(16(2p - 3q) - 4) \] ### Step 3: Simplify the expression inside the parentheses Now, we simplify the expression inside the parentheses: \[ 16(2p - 3q) - 4 \] This can be simplified to: \[ 16(2p - 3q) - 4 = 16(2p - 3q) - 4 \cdot 1 \] ### Step 4: Rewrite the expression So the expression becomes: \[ (2p - 3q)(16(2p - 3q) - 4) \] ### Step 5: Factor further if possible Now, we can factor out the constant from the second term: \[ (2p - 3q)(4(4(2p - 3q) - 1)) \] ### Final Factorized Form Thus, the final factorized form of the expression is: \[ 4(2p - 3q)(4(2p - 3q) - 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 16p^(3) -4p

Find the each of the following products: (3p^(2) + q^(2)) (2p^(2) - 3q^(2))

Find each of the following products : (3p^(2) + q^(2)) xx (2p^(2) - 3q^(2))

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

Multiply the (3)/(2) p ^(2) + (2)/(3) q ^(2), (2p ^(2) - 3q ^(2))

Let pa n dq be real numbers such that p!=0,p^3!=q ,a n d p^3!=-qdot If alphaa n dbeta are nonzero complex numbers satisfying alpha+beta=-pa n dalpha^2+beta^2=q , then a quadratic equation having alpha//betaa n dbeta//alpha as its roots is A. (p^3+q)x^2-(p^3+2q)x+(p^3+q)=0 B. (p^3+q)x^2-(p^3-2q)x+(p^3+q)=0 C. (p^3+q)x^2-(5p^3-2q)x+(p^3-q)=0 D. (p^3+q)x^2-(5p^3+2q)x+(p^3+q)=0

If 2p + 3q = 12 and 4p^(2) + 4pq - 3q^(2) = 126 , then what is the value of p + 2q ?